
Evaluating the Next Generation Sidecar-less
Kubernetes Service Mesh: Ambient Mesh
Anupam Saha
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00193210@myTUDublin.ie

Introduction
A service mesh is a dedicated infrastructure layer in the Kubernetes cluster to make service-to-service communication safer, faster, and more reliable.
Typically, service meshes are built with a two-tier architecture, housing a control plane for mesh configuration and a data plane to provide mesh
functionalities. The data plane consists of a sidecar container that attaches itself to a microservice pod, the smallest deployable unit in Kubernetes.
Though this sidecar container architecture reduces a lot of burden on microservice source code, it also increases the overall compute resource usage of
pods. To counter this, a new data plane architecture called ambient mesh was born. Instead of running a sidecar container in each microservice pod,
ambient mesh implements the data plane by deploying a single proxy per node. This utilizes the Linux eBPF technology and brings a lot of excitements
in service mesh space. Ambient mesh was originally developed by Solo and Google, but now it is part of the open-source project Istio. This research
explores the ambient mode that comes with the newer version of Istio to evaluate its compute resource usage and operational complexities.

Objectives

RQ1. Does Istio ambient mode consumes less
compute resources than sidecar mode?

RQ2. Does the sidecar-less architecture reduces
operational complexities?

Motivation
With the release of ambient mesh alpha ver-
sion as part of Istio, a massive improvement in
compute resource consumption is reported over
sidecar architecture in multiple gray literature,
however, no academic research paper is avail-
able. While most of the service mesh products
available today either use Envoy or in-house-
developed sidecar proxies to determine the suc-
cess factor, ambient mesh applies a completely
different approach by leveraging Linux eBPF
technology and separating layer 4 and layer 7 ca-
pabilities. While eBPF gives the ambient mesh
to improve its resource efficiency, two separated
layers allow Kubernetes administrators a differ-
ent level of flexibility while deploying Istio in
their environment. All of these bring an excit-
ing opportunity to evaluate and publish an aca-
demic research report on ambient mesh.

Methodology

A research platform is built to investigate the compute resource consumption by Istio sidecar and
ambient modes after exploring the ambient mesh architecture. In sidecar mode, a tight-coupled
architecture is seen where envoy proxies are attached to each running service pod, as shown in
Figure 1, whereas ambient mode deploys a single Ztunnel proxy per node, as shown in Figure 2.
The research is based around the principles of having multiple test executions with Ztunnel and
Waypoint proxies engaged in ambient mode and Envoy proxies attached to each pod where a demo
application, Bank-of-Anthos (BOA), is deployed to a Kubernetes cluster. To follow an enterprise-
grade deployment model, BOA is deployed in single and multiple Kubernetes namespaces to explore
the intensive nature of Istio in both modes. Google Cloud Platform is used as a cloud provider for
the research, where Kubernetes clusters are provisioned using Terraform and Istio is installed using
Istioctl and Istio operator. To engage Istio in resource-intensive filtering, 10-minute load testing is
performed on BOA for each test session, along with layer 4 and layer 7 traffic filtering. Test results
are captured from the Grafana dashboard by applying Prometheus metrics for CPU and memory. To
measure operational complexity, Istio is upgraded using a blue-green deployment strategy to check
whether a pod restart is required to apply the new version of Istio to the running microservices.

Research Findings

Conclusions and Future Work
While the sidecar-less model of ambient mesh brings some significant improvements in compute
resource consumption and operational excellence, the sidecar model of Istio is well established and
widely used today. In near future when a stable version of ambient mesh is released, this scenario
shall be changed and ambient mode may become the default installation mode for Istioctl. Leveraging
Linux eBPF technology, ambient mesh brings a lot of opportunity in service mesh space for future
research. Some of which can be categorized as Istio’s network latency due to Ztunnel and Waypoint
proxies distributed nature and supporting Kubernetes Jobs or server-send-first protocols features
which are currently not supported by Istio sidecar mode.

QR Code for Recording


