
A Performance and Cost Analysis of Java-
based Function-as-a-Service on AWS
Alan Kavanagh
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00080986@myTUDublin.ie

Introduction
This study consists of a research project that compares and contrasts the performance and cost of Java-based Function-as-a-Service (FaaS) solutions
on Amazon Web Services (AWS). The objective of the research is to understand the improvement that each solution offers with regard to cold start
mitigation for Java-based serverless functions on AWS. A series of experiments are conducted to assess the start-up performance and associated cost
of lambda functions deployed to AWS Lambda, AWS Lambda with SnapStart, and AWS Lambda with Provisioned Concurrency. The results of each
experiment are collected, depicted, and analysed, and then the findings and conclusions are presented in the form of a performance and cost comparison.

Hypothesis
“Lambda SnapStart for Java can improve
startup performance for latency-sensitive appli-
cations by up to 10x at no extra cost” - AWS

It is expected that the results produced will help
identify an increased start-up performance for
SnapStart in comparison to Lambda and Provi-
sioned Concurrency. If the hypothesis is correct,
the results should indicate a reduced cold-start
latency, and reduced number of cold-start occur-
rences, without incurring any additional costs,
when deploying Java-based serverless functions
on AWS Lambda with SnapStart enabled

Research Questions
• RQ1. What impact does AWS Lambda

with SnapStart have on the cold start la-
tency, and cold start occurrences, of Java-
based serverless functions?

• RQ2. How does AWS Lambda with
SnapStart perform in comparison to AWS
Lambda, and AWS Lambda with Provi-
sioned Concurrency?

• RQ3. Does AWS Lambda SnapStart in-
crease start-up performance by 10x at no
extra cost?

Deployment Architecture and Invocation Flow

Results and Findings

Conclusions
SnapStart does not decrease the number of cold start occurrences in comparison to AWS Lambda.
SnapStart consistently has a 600ms restoration time, and outperforms AWS Lambda for functions
with a higher initialisation time. SnapStart incurs the same costs as AWS Lambda for higher exe-
cution time functions, or slightly more for lower execution time functions. Provisioned Concurrency
outperformed SnapStart in all scenarios, however, it incurred additional costs up to x5 or x6 in
comparison. Upgrading from JDK11 to JDK17 can decrease the average execution time by 75%.

QR Code for Recording


