
Case Studies of RestAPI and GraphQL
Architecture
Janni Daniel Balraj
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00193260@myTUDublin.ie

Introduction
The adoption of microservices architecture has experienced significant growth, driven by its appeal in terms of modularity, scalability, and deployment
ease. However, this proliferation of microservices has intensified the demand for efficient data exchange among them. While REST API has long been
the standard protocol for microservices communication, its limitations in flexibility and performance have spurred the ascent of GraphQL as a more
efficient alternative, as highlighted by studies comparing their performance. As the number of microservices continues to rise, traditional methods like
REST APIs prove challenging, leading to issues such as over-fetching or under-fetching of data. GraphQL addresses these challenges by allowing each
microservice to define its schema, thereby simplifying data integration and reducing coordination efforts between teams. In addition to its flexibility,
GraphQL contributes to enhanced performance by empowering clients to specify their precise data requirements, resulting in a reduction of unnecessary
requests and improved response times. Despite these advantages, the integration of GraphQL with microservices presents its own set of challenges,
including ensuring data consistency across services and requiring upfront planning for schema and resolver functions. This research paper aims to delve
into the integration of GraphQL with microservices, conducting a comparative performance analysis with REST API in an on-premises environment.

Research Questions
The conventional approach, using RESTful
APIs for communication, often encounters chal-
lenges related to over-fetching and under-
fetching of data, hindering system performance
and efficiency. The emergence of GraphQL of-
fers a compelling solution to these challenges,
allowing precise data retrieval and reducing the
volume of redundant requests in a microservices
environment.

The core problem addressed in this research is:

Q1 - To what extent does the integration of
GraphQL improve the efficiency and perfor-
mance of data exchange between microservices
when compared to RESTful APIs, and

Q2 - what are the implications and challenges of
implementing GraphQL in a microservices ar-
chitecture?

Test Strategy and Methodology
• Functional Testing, Performance Testing

and Usability Testing

• Data Preparation: 10 million stock records
were generated and inserted into the Post-
greSQL database.

• Load tests were conducted using Apache
JMeter to simulate concurrent user re-
quests for stock data retrieval.

Architecture

1. REST API Architecture:

Stateless Communication: REST
APIs are stateless, meaning that each
request from a client to a server con-
tains all the information needed to un-
derstand and fulfill the request. The
server does not store any information
about the client’s state between re-
quests.
Resource-Based: Resources, such
as data objects or services, are iden-
tified by URLs (Uniform Resource Locators). Clients interact with these resources using standard
HTTP methods like GET, POST, PUT, and DELETE.
Representation: Resources are represented in a format such as JSON or XML, and clients can
manipulate these representations.

2. GraphQL Architecture:

Query Language: GraphQL is a
query language for APIs. Clients can
request only the data they need, and
the server responds with the requested
data in a single JSON object.
Hierarchical Structure: The struc-
ture of a GraphQL query mirrors the
structure of the data it retrieves. This
hierarchical nature allows clients to
request nested data in a single query.
Single Endpoint: Unlike REST, which often has multiple endpoints for different resources,
GraphQL typically exposes a single endpoint for all interactions

Performance Graph: RESTAPI vs GraphQL

Conclusions and Future Work
In real-time data scenarios, GraphQL surpasses REST API by efficiently delivering specific data
fields, thereby reducing network traffic and enhancing responsiveness. The adaptability of GraphQL
enables seamless integration of new data sources without disrupting existing endpoints in complex
applications. Looking ahead, the current implementation in a local environment is slated for deploy-
ment in cloud platforms like AWS, GCP, or Azure. The future plan includes enhancing scalability
and establishing a resilient architecture to optimize performance and reliability.

QR Code for Recording


