
Software Repository Assessment in DevOps:
A Machine Learning Approach to Quality
Edmund Fitzgerald
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00193258@myTUDublin.ie

Introduction
This research embarks on an innovative journey to evaluate software repository quality within the DevOps realm. Utilizing a machine-learning model,
it analyzes data from the top 100 GitHub repositories in JavaScript, Python, and Java, focusing on commit history and GitHub metrics such as stars
and forks. This approach transcends traditional, subjective assessment methods, offering a unique blend of qualitative and quantitative analysis. It aims
to establish new benchmarks for software development quality by integrating technical and community-driven data. This study not only contributes to
software engineering best practices but also paves the way for advanced AI-driven quality assessment tools in software development.

Machine Learning Model

The model employs Python’s ’sklearn’ package
and integrates four distinct types: Linear
Regression, Ridge Regression, Random Forest,
and Gradient Boosting. Each model’s unique
methodology and algorithmic framework are
comprehensively detailed, highlighting their
specific capabilities in identifying and
analyzing patterns and trends within the
dataset. This detailing aids in understanding
the nuanced performance of each model type
and their roles in predictive analysis.

Data Collection and Preprocessing

The data was collected by scraping all the
commit metadata for 4 months from GitLab,
via GH Archive and storing this information in
a PostgreSQL database. This was then queried
and the results saved as CSV files for model
training. To ensure accuracy once complete,
one repository’s data was moved out into a
separate CSV to verify the model for QA.

Results

Figure 1: Java Figure 2: JavaScript Figure 3: Python

Figure 4: MSE and R squared

The findings of this thesis demonstrate statistical significance, indicating promising directions for
future research. However, they currently fall short of being immediately applicable for production use.
With further refinement and development, these methods have the potential to not only outperform
existing approaches but also provide quantifiable enhancements in practical applications.

Topic Overview
Focusing on the top 100 GitHub repositories in JavaScript, Python, and Java, this research aims to develop an extensive evaluation method by analyzing
commit data and GitHub metrics like stars and forks. This innovative blend of qualitative and quantitative analysis seeks to enhance traditional,
subjective methods of repository assessment.
The study begins with exhaustive objective data collection from GitHub, considering the top three languages to ensure relevance and broad applicability.
It involves gathering comprehensive commit history, offering insights into development practices, and using GitHub comparative metrics such as Stars,
forks, and followers as a proxy for subjective surveys or interview data.
Central to this research is a machine-learning model trained on a rich dataset. It employs algorithms adept at identifying complex patterns, which is
crucial for understanding the nuances of code quality. The study addresses the challenge of defining and quantifying ’quality’ in software repositories,
employing community ratings like GitHub stars and followers as proxies, and acknowledging these metrics’ weaknesses while offering them as a more
useful metric than subjective surveys.
This approach aims to assess the feasibility of using machine learning to predict ongoing repository quality based on objective metrics. The model is
expected to be a valuable tool for developers, project managers, and organizations, aiding in informed decision-making regarding open-source projects.

Conclusions and Future Work
This thesis shows machine learning’s effectiveness in improving DevOps software repository
assessment. Analyzing commit data and GitHub metrics offers an objective approach surpassing
conventional methods. It also highlights the challenge of defining ’quality’ in software development
due to metric subjectivity, suggesting varied quality indicators. Future research areas include:

1. Algorithm Enhancement: Apply advanced techniques for improved model accuracy and
adaptability.

2. Tool Integration and Development: Utilize findings in DevOps tools for real-time quality
assessment.

3. Broadening the Model’s Application: Expand the model to predict various software
development aspects.

QR Code for Recording


