
A Comprehensive Evaluation of Helm and Helm-
file for Efficient Management of Microservices
Trinath Chakka
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00193221@myTUDublin.ie

Introduction
Microservices are supported by Kubernetes, a popular container orchestration platform run by the Cloud Native Computing Foundation that offers
capabilities including automated deployment and scalability. This research evaluates critical performance aspects, focusing on chart execution time and
service uptime on Helm vs Helmfile. The goal of the study is to get a better knowledge of Helm and Helmfile’s respective advantages and disadvantages
when it comes to coordinating deployments within Kubernetes frameworks by analysing various deployment methodologies.

Deployment Comparision Table

Model
(Services)

Branches-
Runs

Average
Time for
all branches

Helm
Small
(5)

Main-10
Downgrade-10
Upgrade-10
Rerun-10

3m 59s
3m 30s
3m 31s
2m 17s

Total = 40 Total:13m

Helm
Medium
(25)

Main-5
Downgrade-5
Upgrade-5
Rerun-5

18m 6s
20m 51s
18m 40s
7m 7s

Total = 20 Total:64m

Helm
Large
(40)

Main-3
Downgrade-3
Upgrade-3
Rerun-3

28m 33s
31m 59s
30m 19s
16m 54s

Total = 12 Total: 107m

Helmfile
Small(5)

Main-10
Downgrade-10
Upgrade-10
Rerun-10

4m 21s
3m 25s
3m 6s
1m 51s

Total = 40 Total:12m

Helmfile
Medium
(25)

Main-5
Downgrade-5
Upgrade-5
Rerun-5

16m45s
15m50s
13m18s
3m15s

Total = 20 Total:49m

Helmfile
Large
(40)

Main-3
Downgrade-3
Upgrade-3
Rerun-3

32m 28s
20m 02s
15m 22s
6m 40s

Total = 12 Total:74m

Research Questions

RQ1 - How do chart execution times differ between Helm and Helmfile, particularly
when small, medium, and large components application scenarios are deployed?

The outcomes clearly show that Helmfile consistently outperforms Helm, with deployment efficiency
across small, medium, and large models increasing by a factor of three. Helmfile’s continuous ad-
vantage over Helm is indicated by its faster deployment times. Helmfile’s efficiency benefits are
highlighted by the significant time savings seen in all deployment sizes, making it an appealing
choice for enterprises looking to streamline Kubernetes deployment procedures. Helmfile’s continued
exceptional performance confirms its continued relevance as a tool of choice for orchestration in a
variety of deployment situations.

RQ2 - What effect do Helm and Helmfile have on Kubernetes application service up-
time, and how do their performances differ in terms of maintaining dependable and
continuous service availability?

In downgrade and upgrade circumstances, Helmfile regularly performs better than Helm, but Helm
typically delivers quicker service uptime, especially in big branches. Local state management and the
declarative nature of Helmfile help to speed up service uptime during upgrades. This sophisticated
knowledge highlights the need of picking orchestration tools customised to particular requirements
for continuous service availability in a variety of Kubernetes environments, enabling organisations to
make decisions between Helm and Helmfile based on their unique deployment needs.

RQ3 - How does Helmfile’s declarative approach and local state maintenance effect the
speed and reliability of complex deployment scenarios, and how does it handle Helm’s
management challenges?

In complex deployment scenarios, Helmfile’s declarative style and local state management greatly
improve speed, reliability, and efficiency over Helm. Helm’s drawbacks are addressed by Helmfile,
which enables faster and more effective deployments by maintaining a local state and expressing the
planned deployment state reliably. This is especially useful in large-scale installations. The ability
of Helmfile to track changes at a finer level is useful for managing version transitions and gives
enterprises an easier-to-use orchestration tool for complex Kubernetes installations.

Test Strategy
The experiment was carried out on Azure, using Azure DevOps for rigorous testing. The infrastructure
was divided into two separate projects for Helm and Helmfile, with repositories aimed to small, medium,
and large applications. Each repository, constructed with 5, 25, and 40 services. To enhance precision
and robustness, we conducted 10 cycles for the small branch, 5 cycles for the medium branch, and 3
cycles for the large branch. Each repository included four important branches: "main", "downgrade",
"upgrade" and "rerun". The results of all tests are gathered in the deployment comparison table above
and the corresponding picture for a visual representation is available here.
Main Branch: Latest Chart version.
Downgrade Branch: Last Stable version for compatibility validation.
Upgrade Branch: Same versions as main branch for compatibility check.
Rerun Branch: Evaluates deployment speed with no version changes

Conclusions and Future Work
Helmfile shows to be more effective and adaptable in small, medium, and large-scale Kubernetes
installations, improving dependability and deployment times. Helmfile’s attraction for easier Kuber-
netes administration, especially in large-scale deployments, is highlighted by rich insights provided by
statistical analysis and graphical representations. Helmfile beats Helm in deployment performance
by using locally cached resources, cutting down on the times associated with Helm’s sequential ap-
proach.
Future endeavors should prioritize enhancing compatibility, scalability testing, CI/CD integration,
security fortification, and user experience. These cooperative projects are essential to Helm and
Helmfile’s ongoing development and relevance in the changing Kubernetes orchestration scene. More
specifically, it is critical to prioritise compatibility with changing Kubernetes versions in order to
provide smooth upgrades and feature integration.

QR Code for Recording


